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SUMMARY
This investigation deals with the stability characteristics of o011

Journal bearings, including the effect of elastic distortions in the bearing
liner. Graphical results are presented for (1) steady-state load, (2)
stiffness and damping coefficients, and (3) the stability. These results are
given for various slenderness ratios, eccentricity ratios, and elasticity
parameters. The lubricant is first assumed to be 1soviscous. The analysis is
then extended to the case of a pressure-dependent viscosity. It has been

found that stability decreases with increase of the elasticity parameter of

the bearing liner for heavily loaded bearings.

NOMENCLATURE
a,b inside and outside radius of the bearing
B noawR2/c2
C 2 + Ny
c radial clearance
D journal diameter

*National Research Council - NASA Research Associlate.



Drr, Dre, dimensionless damping coeffictents (D = Dc3/ngR3L), where the
Der, Doy first and second subscripts refer to the component of the force
and the direction of the velocity respectively

dm,n distortion of the m,n harmonic

E Young's modulus

e eccentricity

F elasticity parameter, F = ngR3w/c3E

G af

H thickness of bearing liner

h, h f1Im thickness, h = h/c

1 Al

Krr, Kre, dimensionless stiffness coefficients (K = Kc3/ngwR3L), where the

Kor, Koo first and second subscripts refer to the component of the force
and the direction of the displacement respectively

L length of bearing

M, M mass of rotor, M, mass parameter (M = Mcw2/W)

m, n axial and circumferential harmonic

P, P pressure, (p = pc2/ngwR?)

Po, P71, P2 steady-state and perturbed (dynamic) dimensionless
pressures

q, q modified pressure, (g = 1/B(1 - e-PB))

R Journal radius

X, ¥, Z circumferential, radial, and axial coordinates

e, y, z dimensionless coordinates, 6 = x/R, y = y/a, z = z/(L/2)

T nondimensional time, T = wpt

t time

u, v, w radial, circumferential, and axial displacements

W, W steady-state load, (W = Wc2/nqwR3L)

a piezo-viscosity coefficient

B harmonic phase angle




s deformation of bearing surface

€, €g eccentricity ratio (¢ = e/c), e steady-state eccentricity
ratio

n, ng absolute viscosity of 011, (ng = viscosity at inlet condition)

¥y, W2 angular coordinates at which film commences and cavitates,
respectively measured from minimum film thickness

T stress

07 T+ U

02 T+ Yo

A, u Lame's constants

d Poisson's ratio

¢, ®0 attitude angle, ¢y = steady-state attitude angile

Q whirl ratio (2 = wp/w)

w angular velocity of journal

wp angular velocity of whirl

INTRODUCTION

Theoretical research on flexible (soft shell) bearings with a rigid rotor
was started with the work of Higginson (Ref. 1) using a simplified method (the
distortion is proportional to the pressure). Since then many workers notably
Hooke, Brighton, and 0'Donoghue (Refs. 2 to 4), Conway and Lee (Refs. §
and 6), and Oh and Huebner (Ref. 7) solved the journal bearing problem
considering the effect of elastic distortions of the bearing liner. 1In
Refs. (2) and (3) the analysis dealt with the infinitely long bearing
approximation. Brighton, Hooke, and 0'Donoghue (Ref. 4) described the method
of solution for finite bearings considering the effect of elastic
distortions. This paper mentions some of the important experimental findings
of Carl (Ref. 8). Bozaci et al. (Ref. 9) gave theoretical and experimental
investigation of a finite journal bearing assuming that three-fourths of the

bearing arc was a uniform thin ring-and the remaining one-fourth was rigid.
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Conway and Lee used long and short bearing approximations, respectively in
their papers (Ref. 5 and 6). Oh and Huebner (Ref. 7) used a finite-element
method which was applied to finite journal bearings.

In recent years several workers have studied the effect of elastic
distortion in dynamically loaded journal bearings (Refs. 10 to 13). From
these studies the minimum fiim thickness as a function of crank angle of
engine bearings can be determined.

The purpose of the present study is to identify the threshold of o1}
whirl for a rigid rotor in self-acting o1l journal bearings considering the
elastic deformation of the bearing liner. The deformation of the liner 1is
estimated by solving the displacement components in the elastic medium. In
the stability study both the translatory and rotating components of journal
vibration have been considered. Using a first-order perturbation method the
time-dependent Reynolds equation is transformed in terms of steady-state and
dynamic pressures. These pressures are solved by a finite-difference method
using Reynolds boundary conditions. From the dynamic pressures the stiffness
and damping coefficients are computed. These are then used in the equation of
motion to find the mass parameter, which is a measure of stability. In the
absence of experimental data, the theoretical mass parameters obtained by this
analysis have been compared with the available results of rigid bearings.

THEORY

Using the normal assumptions in the theory of hydrodynamic lubrication

the differential equation in the bearing clearance of an oil-lubricated

bearing as shown in Fig. 1 is

Q

h
X

a_,.3 3 a ,,33ap
ax (N 3x) + 57 (h 37) = bnguR(1 -

€I

2oy 30, 45, (2N (M

Q




Eq. (1) when nondimensionalized with the following substitutions,

2 ©
6 =% ,h = h L=, p="2E—  T-06t,and @=-L, will read as:
R c L 2 p ©
n_wR
2 0
a_ 3 aQ 2 ) K| Q g ah
a6 (N7 39 + ( ) — (" =0) = 601 - 22 33) —ae + 120 55 (2)

¥ 3z

The steady-state film thickness ho in the case of a flexible bearing is

given by

- F -
ho =1+ £o cos O + c (6,2) (3)

where & 1s the deformation of the bearing surface.

Before trying to find the solution of Eq. (1) satisfying the appropriate
boundary conditions the elastic deformation & 4s obtained in the following
way:

The method is similar to that of Brighton et al. (Ref. 4). 1In the present
calculation the three displacement components u, v, and w- are solved
simultaneously satisfying the boundary conditions. Brighton et al. (Ref. 4),
however, used an approximate method to evaluate the displacements. The method
is briefly given below.

The pressure distribution in the bearing clearance of the rigid bearing is
first calculated by solving the two-dimensional steady-state Reynolds equation.

The film pressure is then expressed in a double Fourier series of the form:

p = }E: :E: Py p €OS thﬁ_l cos(ne + B ) (4)

m n ’ 14

where :E: indicates the first term of the series is halved, and Pm.n

and Bm,n are given by



2w )/2 2
2 J. j. 2m v 7
pm,n = ol go ) p cos L cos no dz de

2 1/2
J. J. p cos 2n v 2 sin ne dz de ; (5)
()

L

2w L/2 )

".[ p cos thz_z sin ne dz de
()

(=)

B, = tan 2n /2

p cos sz“ Z cos no dz de

L i
The first term of the right-hand side of Eq. (4) is 1/2 P0 o When

]

ot —

o

the condition at the end of bearing (p = 0 at z = L/2) is used, one can
obtain Po o Although this term does not contribute any deformation at

z = L/2, its effect for other values of 2z 1s already included in the total

deformation. The boundary conditions of the inner radius are

Ter = 7P
Trg T 0 (6)
t._ =10

rz

The outer surface is rigidly enclosed by the housing preventing any
displacement of the outer surface. The ends of the bearing are prevented from
expanding axially, but are free to move circumferentially or radially.

The displacement components in r, 6, and z directions were found
from the pressure distribution which had been expressed in a Fourier series.

These displacements were substituted in the stress-strain relationships
using Lame's constants. The six components of stresses were then used in the

equations of equilibrium to obtain the following three displacement equations.




R R e N R R R R R
dy y dy y y dy
2 2 2
- (C + 1)?— v - 55 u+ (C-1) 55 dw =0
y a a® dy
2 2
Lyl e o5y (1)
dy y dy y a
1 du u k2 W
-(C—]):—:-(C+1):2--—5(C-1):=0
y dy y a y
d2w 1 dw 2w k2 du u 2 v
T, v - _—Z'—C"é‘w-(C-U—:—(C—l)'_‘—n(C-'l):=0
dy y dy y a dy y y
where
Co2a A K = 2m w_a
u L
The boundary conditions are:
At y=a,c Ll ooty
dy s y oy 2
a
e, (8)
dy y 'y
dw
v _,
dy
and
- b
at y = arU=Vv=ws= 0

Equation (7) was solved using finite-difference methods for unit

pressure, u and R, and the values of dm n were obtained and expressed as

_ouy
dm,n “ Rp (9)

The deformation & of the bearing surface will be

! : 2m w 2
8§ = Z Z Pm.n dm,n cos = (cos ne + Bm,n) (10)



Knowing the distortion coefficients dy n and using the expressicas for
Pm,n and Bp n from Eq. (5) & at any point (0,2) was computed.
Using p = pc2/ngeR2 and z = z/(L/2), the radial deformation in the

inner bearing surface 1is

6 1 1 - - - -
c =20+ of Z Z Pm.n dm,n cos mwz cos (ne + Bm,n)p(e,z) (11)

Here u 1s replaced by E/2(1 + o) and F = nouRs/Eca.

Let us now solve Eq. (2). The boundary conditions are:

p(e,+1) =0
W g0) =0
az
and (12)
6(9,2) =0
) i 92 < 0 < e]
) )
= =0
37 96

where 02 is the angular coordinate where film cavitates.
Assuming that the journal whirls about its mean steady-state-position
given by o and @, for the first-order perturbation, the pressure

and film thickness can be expressed as

PSS | B T
P =Py ¥ Py Paeo®
and (13)
iT iT
. h = ﬁo + 8 COS O + b € sin ©
where
AT
€ = co c]e
(14)
T
=0, + o€

Substituting Eq. (13) into Eq. (2) and collecting the zeroth and the first-

order terms for ¢, and €077 the following set of equations result
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3 3p 2 3 ap
a_ ] D," a_ _o)_ . 8ho (15)
20 (ﬁ° a6 )"(L) 23 (ﬁ° - )‘639 '

¥4
3 3p 2 3 ap 2 dp
3 1 D,” 3 1 3 0
= lho ———) + (7)) — (ho — 3 ={ho — cos o
30 ( EY) L™ a3z a3 36 30
2 ap
+ 3(%) 9: (502 -:9 cos %): -6 sin & + 1(12Q cos 6) (16)
9z ¥4
and
3 ap ) 2 3 ap 2 ap
3 2 D, 3 2 3 0
—ho =)+ (D) —(ﬁo -——)+3——(ﬁo == sin e)
F-1¢) ( 36 L a3 a7 00 15}
2 ap
D\" 3_[po2 2 _ 120 38
+ 3(L) a7 (ﬁo - sin e)_ 6 cos © + 1(24Q sin o) - 1(c°c ae) (17)

Steady-state Solution

The bearing pressure was first obtained from Eq. (15) assuming a constant
f1Im shape (i.e., ﬁo =1 + £, cos 6) and using a finite-difference method
(Gauss-Seidel) with successive overrelaxation scheme. The distribution was
expressed as a double Fourier series as given by Eq. (4). The deformation &/c
(Eq. (11)) was then calculated for a given F using distortion coefficients
from Eq. (9). The fiim thickness equation was then modified using Eq. (3).

The process was repeated until a compatible film shape and pressure

distribution was determined. The steady-state load and attitude angle are
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©

2/ )
ff Po sin o do dz (18)
e, 0

- 50 sin 6 de dz

d_ = tan'] ! : (19)
_{ 60 cos 6 de dz

Solution Under Dynamic Condition

Having obtained the steady-state pressure distribution of a journal
bearing having various L/D (0.5, 1.0, and 2.0), <, (0.6, 0.8, and 0.85),
and F (0, 0.05, 0.1, 0.2, and 0.4) for a constant value of H/R = 0.3 and
o = 0.4, the pressure distribution under dynamic condition was obtained.
Liner thickness to radius ratio of 0.3 and Poisson's ratio of 0.4 were taken
in the present calculation for the purpose of comparison of steady-state
results of Brighton et al. (Ref. 4). The method, however, can handle any
reasonable value of H/R and o up to 0.49. For this purpose Eqs. (16)
and (17) are solved satisfying the appropriate boundary conditions by a
finite-difference method using a successive overrelaxation scheme.

Stiffness and Damping Coefficients

Nondimensional stiffness and damping coefficients can be shown to be

(Ref. 15)
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Stabi11ty Characteristics

Referring to Fig. 1, the equations of motion of the rigid journal, along

the 1ine of centers and its perpendicular direction can be written as

Mc §E§ - c(g'%)2 =F. +Wcos e (21)
t
and
e , , 08, de
Mc € dtz + z(dt) (dt) = F‘P - W sin (7 (22)

Fr and F¢ are the resultant film forces in the r and ¢ directions.

For steady-state

Fro + W cos ®,= 0

(23)
F - W sin @ = 0
@0 (1]

Substituting Eqs. (14) and (23) into Eqs. (21) and (22) and nondimensionalizing,

after neglecting second-order terms

_ 2 _ _ _ _ _
(-MQW + 1QDrr + Krr) gy * (1COQDT¢ t e, Kr¢ + W sin ¢°) ® = 0 (24)

2
oo + 5 K¢¢

(1QD¢ + K¢r) € ¥ (-MQ €0 W+ 1Q o D + W cos ¢°) ® = 0 (25)

r

For a nontrivial solution the determinant of Egs. (24) and (25) must vanish,

and thus

- 2- - - = 2 _ _ — -
(-MQ'W + Krr + 1QDrr) (-MQ €0 W+ o K¢¢ + W Cosg, *+ iQ €y wa)

- (e. K+ W sin ¢, * e D) (K ) =0 (26)

+ 10D
0 Tre 0 Treo ¢

or r
Equating imaginary and real terms of Eq. (26) to zero, we get the following

two equations
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QZ(U + B ) rr e rr e re or
rr

- . 1 - - . - '
¢rKr¢) - : (D¢rw sin ®y - Drrw cos ¢0)] (27)

2, > W cos °,

(MA) @ - AR KW+K”+——€0—— +(Uer(p(p_ﬁr(pD(pr)
L - - 1 - - - -
# (R Ky = KoK+ . (K. W cos g) - K W sin ¢) =0 (28)

From the above two equations M and @ can be calculated. M is the

critical mass parameter above which the bearing is unstable.

Study Under Variable Viscosity 011

In the foregoing sections a scheme was devised for the analysis of the
constant viscosity oi1. We now consider the case of variable viscosity. The
viscosity of most oi1ls increases with pressure and the following relationship

is assumed

n = n e (29)
where "o viscosity of the o1l at the inlet condition
o« plezo-viscosity coefficient.

The Reynolds equation under steady-state conditions for the variable

viscosity case is

aq 2 aq
F 3 “Vo D.“ d 3 Yo aho
=~ tho ——) + (7)) — (ﬁo —-): 6 — (30)
Y ( 20 LY a3 a3 20
- ] -p.B
where : q, = §'<1 - e P ) (31)
n, @ sz
and B = —

The constant B can also be expressed as

B=F G (5
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where G = of.

It may be seen Eq. (30) is of the same form as that of £q. (15). In this
case q may be referred to as the modified pressure. We can solve qo
following a similar approach. After knowing q0 the pressure distribution
po can be found using Eq. (31) for a given value of B. The elastic
deformation & 1s then obtained from Eq. (11). The process was repeated
until the fi1Im shape and pressure were converged simultaneously. The
stability study was then made using the method given in the previous section.

RESULTS AND DISCUSSION

The circumferential pressure distribution obtained from the present
method of solution has been plotted in Fig. 2 for various values of F for a
particular bearing. It may be seen that the peak pressure decreases with
increase in the elasticity parameter (i.e., for softer shells). In Table I
the comparison of maximum centerline pressures in the circumferential
direction of the present solution for a finite bearing with L/D = 1.0,
ey = 0.85, and for values of F varying from O to 0.4 with those of
Ref. (4) are shown. Table II compares the mass parameter of the present
solution with that of Allaire (Ref. 16) for a rigid bearing. Both tables
indicate a falr agreement. The fi1lm thickness at the centerline in the
circumferential direction 1s plotted in Fig. 3. When F = 0.4, the film
profile at the high-pressure zone shows a similarity to that of an
elastohydrodynamic point contact condition. Fig. 4 shows the steady-state
load capacity variation with elasticity parameter for three eccentricity
ratios (i.e., €, = 0.6, 0.8, 0.85). Although there is 1ittle variation of
load with F at low eccentricity ratios, the load drops very sharply with F
at €, = 0.85. This load goes below the one that is obtained at |
£q = 0.8 when F approaches a high value. The increase in F 1increases
the minimum f1Im thickness. This in effect reduces the true eccentricity
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ratio, therefore pressures and load capacity drop. It may ve mentioned that a
similar observation has been made by Conway and Lee (Ref. 6) while analyzing a
flexible bearing using the short bearing approximation. Because of the
difficulty in convergency, it was not possible to study the effect of load at
values of €0 > 0.85. As there is no effect of elastic parameter on the
bearing performance for £, < 0.6, the results are presented for €0 > 0.6.

In Figs. 5 and 6 the stiffness and damping coefficients for the
isoviscous case have been plotted for £q = 0.6 and 0.8. It is evident,
there 1s 1ittle variation of these coefficients for e¢g = 0.6. However,
some stiffness and damping coefficients (Kpr, Kpy, Dpp,) at eo = 0.8
vary significantly with F. An increase in distortion of the 1iner causes the
direct-coupled radial stiffness coefficient to decrease while the direct
damping coefficient increases. The reverse effect was noted for the
cross-coupled r-¢p stiffness and damping coefficients. Further, all other
stiffness and damping coefficients were relatively unaffected by the
filexibility of the bearing liner.

Eccentricity ratio plays an important part in the margin of stability.
This can be seen from Fig. 7. The stability threshold falls rapidly with F
at higher eccentricity ratios. When one studies the stability behavior of a
rigid bearing, it is revealed that the stability is not a problem at high
eccentricity ratios. 1In other words, a rigid bearing is highly stable at high
eccentricity ratios. This can also be verified from Table II. However, for a
flexible bearing liner the converse is true. The whirl ratio (Fig. 8) also
increases very sharply with F for €y = 0.85 and it goes well above 0.5.
This 1s a perfect example of the latitude that can be taken with the meaning
of "half-frequency whirl" since the whirl ratio for instability occurs at

values generally close to, but different from 0.5.
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The effect of L/D ratio on stability s shown in Fig. 9 for a

particular value of F = 0.2. It is seen that the bearing is highly stable
when L/D 1is small but drops drastically as L/D increases from 0.5 to 1.
The stability margin does not decrease much when L/D dincreases from 1 to 2.
A similar trend is also seen for other values of F.

In Figs. 10 and 11 the variation of stability and whirl ratio on the
pressure-dependent viscosity is shown. The stability is seen to improve with
increasing B for all values of £y while the whirl ratio generally

decreases with increasing 8.
CONCLUSIONS

Numerical methods are used to determine the effects of elastic
distortions in the bearing liner on bearing performance and stability for a
finite journal bearing. A linearization method using a first-order
perturbation theory was used for the stability analysis. The following
conclusions were evident:

1. The region of stability decreases as the bearing l1iner is made more
flexible for high eccentricity ratios (i.e., £, > 0.8). For €, < 0.8,
the flexibility of the bearing liner had 1ittle or no effect on stability.

2. As L/D 1is increased, distortion effects are more prominent. This
leads to a decrease in stability.

3. An increase in distortion of the liner causes the direct-coupled
radial stiffness coefficient to decrease while the direct damping coefficient
increases. The reverse effect was noted for the cross-coupled r-¢
stiffness and damping coefficients. Further, all other stiffness and damping
coefficients were relatively unaffected by the flexibility of the bearing

liner.
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4. The hydrodynamic pressure and hence the load capacity i. reduced as
the bearing liner becomes more flexible, especially at eccentricities greater
than 0.8.

5. As the bearing 1iner becomes softer, the whirl ratio, @, remains
relatively constant (1.e., 0.46 < @ < 0.53) for €q = 0.6 and 0.8. Ffor
€y = 0.85 the whirl ratio changed drastically (1.e., 0.30 < @ < 0.58) with
an increase in the elasticity parameter.

6. The stability increases for increasing viscosity of the oi1l.
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TABLE I. - COMPARISON OF MAXIMUM TABLE II. - COMPARISON OF THE
STEADY-STATE PRESSURE OBTAINED PRESENT SOLUTION WITH THAT OF
BY THE PRESENT METHOD TO THAT ALLAIRE (16) FOR RIGID

OF BRIGHTON ET AL. (4) CYLINDRICAL JOURNAL

{L/D = 1.0, ¢ = 0.85, BEARING
= 0.4]

H/R = 0.3, o [(L/D = 1.0, F = 0}

F | Pmax | Pmax 2 co M Ma
0 17.25| 16.80 0.1]6.950| 6.8
0.05]13.50| 14.10
31 7.512 6.8
10111.50]11.40 8| 15.45| 16.0
.20 9.00| 8.70 - : '
.40} 6.25| 6.30 aindicates the results

d4Indicates the results by Allaire (Ref. 16).

by Brighton et al. (Ref. 4).
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FIGURE 1. - SCHEMATIC DIAGRAM OF A JOURNAL BEARING.
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